Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 766
Filtrar
1.
Eur J Pharmacol ; 971: 176525, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561101

RESUMO

Depression is a debilitating mental disease that negatively impacts individuals' lives and society. Novel hypotheses have been recently proposed to improve our understanding of depression pathogenesis. Impaired neuroplasticity and upregulated neuro-inflammation add-on to the disturbance in monoamine neurotransmitters and therefore require novel anti-depressants to target them simultaneously. Recent reports demonstrate the antidepressant effect of the anti-diabetic drug liraglutide. Similarly, the natural flavonoid naringenin has shown both anti-diabetic and anti-depressant effects. However, the neuro-pharmacological mechanisms underlying their actions remain understudied. The study aims to evaluate the antidepressant effects and neuroprotective mechanisms of liraglutide, naringenin or a combination of both. Depression was induced in mice by administering dexamethasone (32 mcg/kg) for seven consecutive days. Liraglutide (200 mcg/kg), naringenin (50 mg/kg) and a combination of both were administered either simultaneously or after induction of depression for twenty-eight days. Behavioral and molecular assays were used to assess the progression of depressive symptoms and biomarkers. Liraglutide and naringenin alone or in combination alleviated the depressive behavior in mice, manifested by decrease in anxiety, anhedonia, and despair. Mechanistically, liraglutide and naringenin improved neurogenesis, decreased neuroinflammation and comparably restored the monoamines levels to that of the reference drug escitalopram. The drugs protected mice from developing depression when given simultaneously with dexamethasone. Collectively, the results highlight the usability of liraglutide and naringenin in the treatment of depression in mice and emphasize the different pathways that contribute to the pathogenesis of depression.


Assuntos
Depressão , Flavanonas , Liraglutida , Camundongos , Animais , Depressão/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inflamação/tratamento farmacológico , Neurogênese , Dexametasona/farmacologia
2.
Sci Rep ; 14(1): 7970, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575652

RESUMO

Dietary salt has been associated with cognitive impairment in mice, possibly related to damaged synapses and tau hyperphosphorylation. However, the mechanism underlying how dietary salt causes cognitive dysfunction remains unclear. In our study, either a high-salt (8%) or normal diet (0.5%) was used to feed C57BL/6 mice for three months, and N2a cells were cultured in normal medium, NaCl medium (80 mM), or NaCl (80 mM) + Liraglutide (200 nM) medium for 48 h. Cognitive function in mice was assessed using the Morris water maze and shuttle box test, while anxiety was evaluated by the open field test (OPT). Western blotting (WB), immunofluorescence, and immunohistochemistry were utilized to assess the level of Glucagon-like Peptide-1 receptor (GLP-1R) and mTOR/p70S6K pathway. Electron microscope and western blotting were used to evaluate synapse function and tau phosphorylation. Our findings revealed that a high salt diet (HSD) reduced the level of synaptophysin (SYP) and postsynaptic density 95 (PSD95), resulting in significant synaptic damage. Additionally, hyperphosphorylation of tau at different sites was detected. The C57BL/6 mice showed significant impairment in learning and memory function compared to the control group, but HSD did not cause anxiety in the mice. In addition, the level of GLP-1R and autophagy flux decreased in the HSD group, while the level of mTOR/p70S6K was upregulated. Furthermore, liraglutide reversed the autophagy inhibition of N2a treated with NaCl. In summary, our study demonstrates that dietary salt inhibits the GLP-1R/mTOR/p70S6K pathway to inhibit autophagy and induces synaptic dysfunction and tau hyperphosphorylation, eventually impairing cognitive dysfunction.


Assuntos
Disfunção Cognitiva , Liraglutida , Camundongos , Animais , Liraglutida/farmacologia , Cloreto de Sódio na Dieta/efeitos adversos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Cloreto de Sódio/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Cognição
3.
Reprod Biol Endocrinol ; 22(1): 31, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509558

RESUMO

BACKGROUND: The incidence of male reproductive dysfunction is increasing annually, and many studies have shown that obesity can cause severe harm to male reproductive function. The mechanism of male reproductive dysfunction caused by obesity is unclear, and there is no ideal treatment. Identification of effective therapeutic drugs and elucidation of the molecular mechanism involved in male reproductive health are meaningful. In this study, we investigated the effects of the GLP-1 receptor agonist liraglutide on sex hormones, semen quality, and testicular AC3/cAMP/PKA levels in high-fat-diet-induced obese mice. METHODS: Obese mice and their lean littermates were treated with liraglutide or saline for 12 weeks. Body weight was measured weekly. Fasting blood glucose (FBG) was measured using a blood glucose test strip. The serum levels of insulin (INS), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), free testosterone (F-TESTO), estradiol (E2), and sex hormone binding globulin (SHBG) were detected using ELISA. The sperm morphology and sperm count were observed after Pap staining. The mRNA and protein expression levels of testicular GLP-1R and AC3 were measured by RT-qPCR and Western blot, respectively. Testicular cAMP levels and PKA activity were detected using ELISA. RESULTS: Liraglutide treatment can decrease body weight, FBG, INS, HOMA-IR, E2 and SHBG levels; increase LH, FSH, T, and F-TESTO levels; increase sperm count; decrease the sperm abnormality rate; and increase GLP-1R and AC3 expression levels and cAMP levels and PKA activity in testicular tissue. CONCLUSIONS: Liraglutide can improve the sex hormone levels and semen quality of obese male mice. In addition to its weight loss effect, liraglutide can improve the reproductive function of obese male mice, which may also be related to the upregulation of AC3/cAMP/PKA pathway in the testis. This work lays the groundwork for future clinical studies.


Assuntos
Liraglutida , Testículo , Camundongos , Animais , Masculino , Testículo/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Camundongos Obesos , Análise do Sêmen , Glicemia , Sêmen/metabolismo , Peso Corporal , Obesidade , Hormônios Esteroides Gonadais , Hormônio Luteinizante , Testosterona , Hormônio Foliculoestimulante , Insulina
4.
PeerJ ; 12: e17055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500527

RESUMO

Background and Objectives: Recent studies have shown that the imbalance of intestinal flora is related to the occurrence and progression of diabetic nephropathy (DN) and can affect lipid metabolism. Sodium-dependent glucose transporters 2 (SGLT2) inhibitor and glucagon-like peptide-1 (GLP-1) receptor agonist are commonly used hypoglycemic drugs and have excellent renal safety. The purpose of this study was to compare the protective effects of empagliflozin and liraglutide on kidneys, lipid metabolism, and intestinal microbiota in diabetic mice. Methods: We established a mouse model of type two diabetes by feeding rats a high-fat diet (HFD) followed by an intraperitoneal injection of STZ. The mice were randomly divided into groups: normal control (NC), diabetic model (DM), liraglutide treatment (LirT), empagliflozin treatment (EmpT), and liraglutide combined with empagliflozin treatment (Emp&LirT) groups. Blood glucose, lipids, creatinine, and uric acid, as well as urinary nitrogen and albumin levels were measured. The renal tissues were subjected to HE, PAS and Masson's staining. These parameters were used to evaluate renal function and histopathological changes in mice. Mice feces were also collected for 16sRNA sequencing to analyze the composition of the intestinal flora. Results: All the indexes related to renal function were significantly improved after treatment with drugs. With respect to lipid metabolism, both drugs significantly decreased the serum triglyceride levels in diabetic mice, but the effect of liraglutide on reducing serum cholesterol was better than that of empagliflozin. However, empagliflozin had a better effect on the reduction of low-density lipoproteins (LDL). The two drugs had different effects on intestinal flora. At the phylum level, empagliflozin significantly reduced the ratio of Firmicutes to Bacteroidota, but no effect was seen with liraglutide. At the genus level, both of them decreased the number of Helicobacter and increased the number of Lactobacillus. Empagliflozin also significantly increased the abundance of Muribaculaceae, Muribaculum, Olsenella, and Odoribacter, while liraglutide significantly increased that of Ruminococcus. Conclusion: Liraglutide and empagliflozin were both able to improve diabetes-related renal injury. However, the ability of empagliflozin to reduce LDL was better compared to liraglutide. In addition, their effects on the intestine bacterial flora were significantly different.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Glucosídeos , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Ratos , Animais , Liraglutida/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Metabolismo dos Lipídeos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
5.
J Endocrinol ; 261(2)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451873

RESUMO

The glucagon-like peptide 1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that emerged as a pharmacologic target in cardiometabolic disease, including diabetes and obesity, over 30 years ago. The subsequent widespread clinical use of GLP-1R agonists, including exenatide, liraglutide, and semaglutide, has made the GLP-1R a preeminent model for understanding basic GPCR biology, including the emergent field of biased agonism. Recent data demonstrate that the dual GLP-1R/glucose dependent insulinotropic polypeptide receptor (GIPR) agonist tirzepatide exhibits a biased signaling profile characterized by preferential Gαs activation over ß-arrestin recruitment, which appears to contribute to its insulinotropic and body-weight reducing effects in preclinical models. This constitutes a major finding in which nuanced, mechanistic receptor signaling dynamics in vitro mediate real-world clinical differentiation within a drug class. Because of the striking bench-top-to-bed side relevance of this biased signaling phenomenon, we have undertaken a review of the emerging data detailing biased agonism at the GLP-1R. In this review, we introduce the core concept of biased agonism followed by a detailed consideration of the key mechanisms, including ligand-mediated bias, receptor-mediated bias, and systems/cell-type bias. Current industry programs are largely, if not entirely, focused on developing biased ligands, and so we have dedicated a section of the review to a brief meta-analysis of compounds reported to drive biased signaling, with a consideration of the structural determinants of receptor-ligand interactions. In this work, we aim to assess the current knowledge regarding signaling bias at the GLP-1R and how these ideas might be leveraged in future optimization.


Assuntos
Liraglutida , Receptores Acoplados a Proteínas G , Ligantes , Liraglutida/farmacologia , Exenatida/farmacologia , Transdução de Sinais , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
6.
Biochem Pharmacol ; 223: 116170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548245

RESUMO

BACKGROUND: Aortic Aneurysm and Dissection (AAD) are severe cardiovascular conditions with potentially lethal consequences such as aortic rupture. Existing studies suggest that liraglutide, a long-acting glucagon-like peptide receptor (GLP-1R) agonist, offers protective benefits across various cardiovascular diseases. However, the efficacy of liraglutide in mitigating AAD development is yet to be definitively elucidated. METHODS: Ang II (Angiotension II) infusion of APOE-/- mouse model with intraperitoneal injection of liraglutide (200 µg/kg) to study the role of GLP-1R in AAD formation. Bone Marrow Derived Macrophages (BMDM) and Raw264.7 were incubated with LPS, liraglutide, exendin 9-39 or LY294002 alone or in combination. SMC phenotype switching was examined in a macrophage and vascular smooth muscle cell (VSMC) co-culture system. An array of analytical methods, including Western Blot, Immunofluorescence Staining, Enzyme-LinkedImmunosorbent Assay, Real-Time Quantitative Polymerase Chain Reaction, RNA-seq, and so on were employed. RESULTS: Our investigation revealed a significant increase in M1 macrophage polarization and GLP-1R expression in aortas of AD patients and Ang II-induced AAD APOE-/- mice. Administering liraglutide in APOE-/- mice notably reduced Ang II-induced AAD incidence and mortality. It was found that liraglutide inhibits M1 macrophage polarization primarily via GLP-1R activation, and subsequently modulates vascular smooth muscle cell phenotypic switching was the primary mechanism. RNA-Seq and subsequent KEGG enrichment analysis identified CXCL3, regulated by the PI3K/AKT signaling pathway, as a key element in liraglutide's modulation of M1 macrophage polarization. CONCLUSION: Our study found liraglutide exhibits protective effects against AAD by modulating M1 macrophage polarization, suppressing CXCL3 expression through the PI3K/AKT signaling pathway. This makes it a promising therapeutic target for AAD, offering a new avenue in AAD management.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Humanos , Camundongos , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Angiotensina II/farmacologia , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/tratamento farmacológico , Dissecção Aórtica/prevenção & controle , Macrófagos , Apolipoproteínas E/genética
7.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38541121

RESUMO

Background and Objectives: Glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are cardioprotective drugs. We investigated their effects on left atrial function, a major determinant of cardiac diastolic dysfunction in type 2 diabetes mellitus. We also explored the association of changes in arterial stiffness with those of the LA strain after treatment. Materials and Methods: A total of 200 patients (59.5 ± 9.1 year old, 151 male) with type 2 diabetes mellitus treated with metformin were randomized to insulin (n = 50 served as controls), liraglutide (n = 50), empagliflozin (n = 50) or their combination (liraglutide + empagliflozin) (n = 50). We measured at baseline and 6 months post-treatment: (a) left atrial and global left ventricular longitudinal strain by speckle tracking echocardiography; (b) pulse wave velocity (PWV) and central systolic blood pressure. Results: At baseline, there was a correlation of the LA reservoir strain with PWV (r = -0.209, p = 0.008), central SBP (r = -0.151, p = 0.030), EF (r = 0.214, p = 0.004) and GLS (r = -0.279, p = 0.009). The LA reservoir change 6 months post-treatment was correlated with the PWV change in all groups (r = -0.242, p = 0.028). The LA reservoir change 6 months post-treatment was correlated with the GLS change in all groups (r = -0.322, p = 0.004). Six months after intervention, patients treated with liraglutide, empagliflozin and their combination improved the left atrial reservoir strain (GLP1RA 30.7 ± 9.3 vs. 33.9 ± 9.7%, p = 0.011, SGLT2i 30 ± 8.3 vs. 32.3 ± 7.3%, p = 0.04, GLP1&SGLT2i 29.1 ± 8.7 vs. 31.3 ± 8.2, p = 0.007) compared to those treated with insulin (33 ± 8.3% vs. 32.8 ± 7.4, p = 0.829). Also, patients treated with liraglutide and the combination liraglutide and empagliflozin had improved left atrial conduction strain (p < 0.05). Empagliflozin or the combination liraglutide and empagliflozin showed a greater decrease of PWV and central and brachial systolic blood pressure than insulin or GLP-1RA. (p < 0.05). Conclusions: Impaired aortic elastic properties are associated with a decreased LA strain in type 2 diabetics. Treatment with liraglutide, empagliflozin and their combination for 6 months showed a greater improvement of left atrial function compared to insulin treatment in parallel with the improvement of arterial and myocardial functions.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Cardiopatias , Insulinas , Inibidores do Transportador 2 de Sódio-Glicose , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulinas/uso terapêutico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Análise de Onda de Pulso , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Função Ventricular Esquerda/fisiologia , Feminino
8.
J Basic Clin Physiol Pharmacol ; 35(1-2): 53-60, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484469

RESUMO

OBJECTIVES: Empagliflozin, a sodium-dependent glucose co-transporter 2 (SGLT2) inhibitor, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, are commonly recognized for their cardiovascular benefits in individuals with type 2 diabetes (T2D). In prior studies, we have demonstrated that both drugs, alone or in combination, were able to protect cardiomyocytes from injury induced by diabetes. Mechanistic investigations also suggested that the cardioprotective effect may be independent of diabetes In this study, we utilized a hypoxia-reoxygenation (H/R) model to investigate the cardiovascular benefits of SGLT2 inhibitor empagliflozin and GLP-1 receptor (GLP-1R) agonist liraglutide, both alone and in combination, in the absence of T2D. Our hypothesis was that empagliflozin and liraglutide, either individually or in combination, would demonstrate cardioprotective properties against H/R-induced injury, with an additive and/or synergistic effect anticipated from combination therapy. METHODS: In this study, the cardiac muscle cell line, HL-1 cells, were treated with vehicle, empagliflozin, liraglutide, or a combination of the two drugs. The cells were then subjected to a hypoxia-reoxygenation (H/R) protocol, consisting of 1 h of hypoxia followed by 24 h of reoxygenation. The effects of the treatments on cytotoxicity, oxidative stress, endothelial nitric oxide synthase (eNOS) activity, phospho-protein kinase C (PKC) beta and phospho-eNOS (Thr495) expression were subsequently evaluated at the end of the treatments. RESULTS: We found that H/R increased cytotoxicity and reduces eNOS activity, empagliflozin, liraglutide or combination treatment attenuated some or all of these effects with the combination therapy showing the greatest improvement. CONCLUSIONS: Empagliflozin, liraglutide or combination of these two have cardioprotective effect regardless of diabetes. Cardioprotective effects of SGLT2 inhibitor and GLP-1R agonist is additive and synergistic.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Liraglutida/farmacologia , Liraglutida/metabolismo , Miócitos Cardíacos/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo
9.
Medicine (Baltimore) ; 103(11): e37432, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489694

RESUMO

BACKGROUND: Liraglutide widely utilized in type 2 diabetes treatment, has elicited conflicting findings regarding its impact on cardiac function in patients with this condition. Therefore, The objective of this study was to conduct a meta-analysis of randomized controlled trials (RCTs) to evaluate the effects of liraglutide on cardiac function in patients diagnosed with type 2 diabetes. METHODS: We identified double-blind randomized trials assessing the effects of liraglutide compared to placebo on cardiac function in patients with type 2 diabetes. Data were synthesized with the fixed-effect models to generate standard mean differences (SMDs) with 95% confidence intervals (CIs) of each outcome for liraglutide versus placebo. The risk of bias would be assessed according to the Cochrane Risk of Bias Tool, while meta-analysis would be conducted using Revman 5.3.0 software. The evidence was graded based on the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS: The meta-analysis encompassed 5 RCTs including 220 participants. Results revealed that liraglutide exhibited significant enhancements in left ventricular ejection fraction [SMD = -0.38, 95%CI(-0.70, -0.06), P = .02], cardiac index [SMD = -1.05, 95%CI(-1.52, -0.59), P < .0001], stroke volume [SMD = -0.67, 95%CI(-1.02, -0.32), P = .0002] and early diastolic filling velocity/late atrial filling velocity ratio [SMD = -0.52, 95%CI(-0.82, -0.22), P = .0006]. However, no statistically significant impact on cardiac output [SMD = -0.20, 95%CI(-0.53, 0.14), P = .26], early diastolic filling velocity/early diastolic annular velocity (E/Ea) ratio [SMD = -0.34, 95%CI(-0.75, 0.06), P = .10] and early diastolic filling velocity/early diastolic mitral annular velocity ratio [SMD = 0.21, 95%CI(-0.15, 0.56), P = .25] was observed. The Grading of Recommendations Assessment, Development and Evaluation evidence quality ratings indicated that all the outcome measures included in this study were evaluated as having low and very low quality. CONCLUSION: The available evidence suggested that liraglutide may exert a favorable impact on cardiac function in patients with type 2 diabetes. Consequently, the utilization of liraglutide as a preventive measure against heart failure incidents in individuals with type 2 diabetes represents a promising strategy. However, robust evidence support requires the conduct of large-scale, multicenter high-quality RCTs.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Função Ventricular Esquerda , Volume Sistólico , Insuficiência Cardíaca/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
10.
Pflugers Arch ; 476(5): 779-795, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536493

RESUMO

The American Diabetes Association guidelines (2021) confirmed the importance of raising public awareness of diabetes-induced cognitive impairment, highlighting the links between poor glycemic control and cognitive impairment. The characteristic brain lesions of cognitive dysfunction are neurofibrillary tangles (NFT) and senile plaques formed of amyloid-ß deposition, glycogen synthase kinase 3 beta (GSK3ß), and highly homologous kinase tau tubulin kinase 1 (TTBK1) can phosphorylate Tau proteins at different sites, overexpression of these enzymes produces extensive phosphorylation of Tau proteins making them insoluble and enhance NFT formation, which impairs cognitive functions. The current study aimed to investigate the potential contribution of liraglutide and pramlintide in the prevention of diabetes-induced cognitive dysfunction and their effect on the PI3K/AKT/GSK-3ß/TTBK1 pathway in type 2 diabetic (T2D) rat model. T2D was induced by administration of a high-fat diet for 10 weeks, then injection of a single dose of streptozotocin (STZ); treatment was started with either pramlintide (200 µg/kg/day sc) or liraglutide (0.6 mg/kg/day sc) for 6 weeks in addition to the HFD. At the end of the study, cognitive functions were assessed by novel object recognition and T-maze tests. Then, rats were sacrificed for biochemical and histological assessment of the hippocampal tissue. Both pramlintide and liraglutide treatment revealed equally adequate control of diabetes, prevented the decline in memory function, and increased PI3K/AKT expression while decreasing GSK-3ß/TTBK1 expression; however, liraglutide significantly decreased the number of Tau positive cells better than pramlintide did. This study confirmed that pramlintide and liraglutide are promising antidiabetic medications that could prevent associated cognitive disorders in different mechanisms.


Assuntos
Disfunção Cognitiva , Dieta Hiperlipídica , Glicogênio Sintase Quinase 3 beta , Liraglutida , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas tau , Animais , Proteínas tau/metabolismo , Ratos , Glicogênio Sintase Quinase 3 beta/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Masculino , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ratos Sprague-Dawley , Estreptozocina , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico
11.
Hum Cell ; 37(3): 666-674, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438663

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder affecting millions of people worldwide, characterized by dysregulated glucose homeostasis and hyperglycemia. Diabetic retinopathy (DR) is one of the serious multisystemic complications. Aging is an important risk factor for DR. Endothelial sirtuin 1 (SIRT1) plays an important role in regulating the pathophysiology of glucose metabolism, cellular senescence, and aging. Liraglutide, an analog of Glucagon-like peptide 1 (GLP-1), has been widely used in the treatment of DM. However, the effects of Liraglutide on DR are less reported. Here, we investigated whether treatment with Liraglutide has beneficial effects on high glucose (HG)-induced injury in human retinal microvascular endothelial cells (HRECs). First, we found that exposure to HG reduced the expression of glucagon-like peptide 1 receptor 1 (GLP-1R). Additionally, Liraglutide ameliorated HG-induced increase in the expression of vascular endothelial growth factor-A (VEGF-A) and interleukin 6 (IL-6). Importantly, Liraglutide ameliorated cellular senescence and increased telomerase activity in HG-challenged HRECs. Liraglutide also reduced the levels of p53 and p21. Mechanistically, Liraglutide restored the expression of SIRT1 against HG. In contrast, the knockdown of SIRT1 abolished the protective effects of Liraglutide in cellular senescence of HRECs. Our findings suggest that Liraglutide might possess a benefit on DR mediated by SIRT1.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/tratamento farmacológico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Liraglutida/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Glucose/efeitos adversos , Glucose/metabolismo , Senescência Celular , Diabetes Mellitus/metabolismo
12.
Int J Nanomedicine ; 19: 2973-2992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544951

RESUMO

Background: For maintenance therapy in type 2 diabetes, glucagon-like peptide-1 agonist (GLP-1A), which exhibits low cardiovascular risk and high efficacy, is a promising peptide therapeutic. However, developing an oral GLP-1A presents challenges due to the analog's poor cellular permeability and gastrointestinal (GI) stability. Methods: To mitigate such limitations, an oral nanoformulation of liraglutide (LG) was designed and achieved by combining LG with bile acid derivatives using the nanoprecipitation method. This strategy allowed the bile acid moieties to localize at the nanoparticle surface, enhancing the binding affinity for apical sodium-dependent bile acid transporter (ASBT) and improving GI stability. The in vitro characteristics, cellular permeability, and absorption mechanisms of the LG nanoformulation (LG/TD-NF) were thoroughly investigated. Furthermore, the in vivo oral absorption in rats and the glucose-lowering effects in a diabetic (db/db) mouse model were evaluated. Results: The LG/TD-NF produced neutral nanoparticles with a diameter of 58.7 ± 4.3 nm and a zeta potential of 4.9 ± 0.4 mV. Notably, when exposed to simulated gastric fluid, 65.7 ± 3.6% of the LG/TD-NF remained stable over 120 min, while free LG was fully degraded. Relative to unformulated LG, the Caco-2 cellular permeability of the nanoformulation improved, measuring 10.9 ± 2.1 (× 10-6 cm/s). The absorption mechanism prominently featured endocytosis simultaneously mediated by both ASBT and epidermal growth factor receptor (EGFR). The oral bioavailability of the LG/TD-NF was determined to be 3.62% at a dosage of 10 mg/kg, which is 45.3 times greater than that of free LG. In a diabetes model, LG/TD-NF at 10 mg/kg/day exhibited commendable glucose sensitivity and reduced HbA1c levels by 4.13% within 28 days, similar to that of subcutaneously administered LG at a dosage of 0.1 mg/kg/day. Conclusion: The oral LG/TD-NF promotes ASBT/EGFR-mediated transcytosis and assures cellular permeability within the GI tract. This method holds promise for the development of oral GLP-1A peptides as an alternative to injections, potentially enhancing patient adherence to maintenance therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Liraglutida , Humanos , Camundongos , Ratos , Animais , Liraglutida/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células CACO-2 , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Trato Gastrointestinal/metabolismo , Ácidos e Sais Biliares , Glucose , Receptores ErbB , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
13.
Obes Surg ; 34(5): 1653-1664, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502519

RESUMO

BACKGROUND: A significant number of patients face the issue of weight gain (WG) or inadequate weight loss (IWL) post-bariatric surgery for obesity. Several studies have been published evaluating the role of glucagon-like peptide-1 receptor agonists (GLP1RA) for weight loss post-bariatric surgery. However, no systematic review and meta-analysis (SRM) till date has evaluated the efficacy, safety and tolerability of GLP1RA in this clinical scenario. Hence, this SRM aimed to address this knowledge gap. METHODS: Databases were searched for randomized controlled trials (RCTs), case-control, cohort and observational studies involving use of GLP1RA in the intervention arm post-bariatric surgery. Primary outcome was weight loss post at least 3 months of therapy. Secondary outcomes were evaluation of body composition parameters, total adverse events (TAEs) and severe adverse events (SAEs). RESULTS: From initially screened 1759 articles, 8 studies (557 individuals) were analysed. Compared to placebo, patients receiving liraglutide had significantly greater weight loss after 6-month therapy [MD - 6.0 kg (95% CI, - 8.66 to - 3.33); P < 0.001; I2 = 79%]. Compared to liraglutide, semaglutide had significantly greater percent reduction in body weight after 6-month [MD - 2.57% (95% CI, - 3.91 to - 1.23); P < 0.001; I2 = 0%] and 12-month [MD - 4.15% (95% CI, - 6.96 to - 1.34); P = 0.004] therapy. In study by Murvelashvili et al. (2023), after 12-month therapy, semaglutide had significantly higher rates of achieving > 15% [OR 2.15 (95% CI, 1.07-4.33); P = 0.03; n = 207] and > 10% [OR 2.10 (95% CI, 1.19-3.71); P = 0.01; n = 207] weight loss. A significant decrease in fat mass [MD - 4.78 kg (95% CI, - 7.11 to - 2.45); P < 0.001], lean mass [MD - 3.01 kg (95% CI, - 4.80 to - 1.22); P = 0.001] and whole-body bone mineral density [MD - 0.02 kg/m2 (95% CI, - 0.04 to - 0.00); P = 0.03] was noted with liraglutide. CONCLUSION: Current data is encouraging regarding use of GLP1RAs for managing WG or IWL post-bariatric surgery. Deterioration of bone health and muscle mass remains a concern needing further evaluation. TRIAL REGISTRATION: The predefined protocol has been registered in PROSPERO having registration number of CRD42023473991.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Obesidade Mórbida , Humanos , Liraglutida/farmacologia , Liraglutida/uso terapêutico , 60650 , Obesidade Mórbida/cirurgia , Redução de Peso , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/cirurgia
14.
J Immunother Cancer ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458640

RESUMO

BACKGROUND: The redundant extracellular matrix (ECM) within tumor microenvironment (TME) such as hyaluronic acid (HA) often impairs intratumoral dissemination of antitumor drugs. Oncolytic viruses (OVs) are being studied extensively for cancer therapy either alone or in conjunction with chemotherapy and immunotherapy. Here, we designed a novel recombinant vaccinia virus encoding a soluble version of hyaluronidase Hyal1 (OVV-Hyal1) to degrade the HA and investigated its antitumor effects in combination with chemo drugs, polypeptide, immune cells, and antibodies. METHODS: We constructed a recombinant oncolytic vaccinia virus encoding the hyaluronidase, and investigated its function in remodeling the ECM of the TME, the antitumor efficacy both in vitro and in several murine solid tumors either alone, or in combination with chemo drugs including doxorubicin and gemcitabine, with polypeptide liraglutide, with immune therapeutics such as PD-L1/PD-1 blockade, CD47 antibody, and with CAR-T cells. RESULTS: Compared with control OVV, intratumoral injection of OVV-Hyal1 showed superior antitumor efficacies in a series of mouse subcutaneous tumor models. Moreover, HA degradation by OVV-Hyal1 resulted in increased intratumoral dissemination of chemo drugs, infiltration of T cells, NK cells, macrophages, and activation of CD8+ T cells. When OVV-Hyal1 was combined with some antitumor therapeutics, for example, doxorubicin, gemcitabine, liraglutide, anti-PD-1, anti-CD47 blockade, or CAR-T cells, more profound therapeutic outcomes were obtained. CONCLUSIONS: OVV-Hyal1 effectively degrades HA to reshape the TME, therefore overcoming some major hurdles in current cancer therapy, such as limited OVs spread, unfavored dissemination of chemo drugs, polypeptides, antibodies, and insufficient infiltration of effector immune cells. OVV-Hyal1 holds the promise to improve the antitumor outcomes of current cancer therapeutics.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Vírus Oncolíticos/genética , Vírus Vaccinia/genética , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/farmacologia , Terapia Viral Oncolítica/métodos , Gencitabina , Linfócitos T CD8-Positivos , Liraglutida/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia/métodos , Modelos Animais de Doenças , Peptídeos/farmacologia , Matriz Extracelular/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Microambiente Tumoral
15.
BMC Genomics ; 25(1): 159, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331723

RESUMO

BACKGROUND: Myoblasts play an important role in muscle growth and repair, but the high glucose environment severely affects their function. The purpose of this study is to explore the potential molecular mechanism of liraglutide in alleviating the effects of high glucose environments on myoblasts. METHODS: MTT, western blot, and ELISA methods were used to investigate the role of liraglutide on C2C12 myoblasts induced by high glucose. The high-throughput transcriptome sequencing technique was used to sequence C2C12 myoblasts from different treated groups. The DESeq2 package was used to identify differentially expressed-mRNAs (DE-mRNAs). Then, functional annotations and alternative splicing (AS) were performed. The Cytoscape-CytoHubba plug-in was used to identify multicentric DE-mRNAs. RESULTS: The MTT assay results showed that liraglutide can alleviate the decrease of myoblasts viability caused by high glucose. Western blot and ELISA tests showed that liraglutide can promote the expression of AMPKα and inhibit the expression of MAFbx, MuRF1 and 3-MH in myoblasts. A total of 15 multicentric DE-mRNAs were identified based on the Cytoscape-CytoHubba plug-in. Among them, Top2a had A3SS type AS. Functional annotation identifies multiple signaling pathways such as metabolic pathways, cytokine-cytokine receptor interaction, cAMP signaling pathway and cell cycle. CONCLUSION: Liraglutide can alleviate the decrease of cell viability and degradation of muscle protein caused by high glucose, and improves cell metabolism and mitochondrial activity. The molecular mechanism of liraglutide to alleviate the effect of high glucose on myoblasts is complex. This study provides a theoretical basis for the clinical effectiveness of liraglutide in the treatment of skeletal muscle lesions in diabetes.


Assuntos
Liraglutida , Transcriptoma , Liraglutida/farmacologia , Liraglutida/metabolismo , Músculo Esquelético/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Mioblastos
16.
Aging (Albany NY) ; 16(4): 3763-3772, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364258

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common postoperative complication in elderly patients. Liraglutide (LRG) has high homology (97%) with natural glucagon like peptide-1, and it has been proved to be effective in some nervous system diseases. Whether LRG could regulate POCD has not been reported. METHODS: Sevoflurane (Sev) was used to simulate postoperative cognitive dysfunction (POCD) model. Morris water maze test was performed to evaluate the memory ability and neurological function of rats. Escape latency, swim distance, crossing platform times, average velocity, and targeting quadrant time were analyzed. The cell apoptosis, mRNA and protein expression were measured through flow cytometry, PCR, and western blotting, respectively. RESULTS: LRG significantly improved the memory ability and neurological function of Sev-treated rats, but 3-MA reversed the effects of LRG. LRG remarkably inhibited apoptosis but up-regulated autophagy related proteins both in vivo and in vitro levels. However, knocking down AMPK could markedly reverse the influence of LRG on apoptosis, autophagy, and cell apoptosis. CONCLUSIONS: LRG induced autophagy activation can maintain cell homeostasis and promote cell survival by blocking the apoptotic pathway. LRG could improve Sev-induced POCD via activating autophagy, inhibiting apoptosis, and regulating AMPK/mTOR signaling pathway. This study provides a novel therapeutic strategy for the prevention and treatment of POCD.


Assuntos
Disfunção Cognitiva , Complicações Cognitivas Pós-Operatórias , Humanos , Ratos , Animais , Idoso , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Sevoflurano/efeitos adversos , Complicações Cognitivas Pós-Operatórias/induzido quimicamente , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Autofagia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico
17.
Int. microbiol ; 27(1): 265-276, Feb. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-230259

RESUMO

Background: Metformin (MET) is a first-line therapy for type-2 diabetes mellitus (T2DM). Liraglutide (LRG) is a glucagon-like peptide-1 receptor agonist used as a second-line therapy in combination with MET. Methods: We performed a longitudinal analysis comparing the gut microbiota of overweight and/or pre-diabetic participants (NCP group) with that of each following their progression to T2DM diagnosis (UNT group) using 16S ribosomal RNA gene sequencing of fecal bacteria samples. We also examined the effects of MET (MET group) and MET plus LRG (MET+LRG group) on the gut microbiota of these participants following 60 days of anti-diabetic drug therapy in two parallel treatment arms. Results: In the UNT group, the relative abundances of Paraprevotella (P = 0.002) and Megamonas (P = 0.029) were greater, and that of Lachnospira (P = 0.003) was lower, compared with the NCP group. In the MET group, the relative abundance of Bacteroides (P = 0.039) was greater, and those of Paraprevotella (P = 0.018), Blautia (P = 0.001), and Faecalibacterium (P = 0.005) were lower, compared with the UNT group. In the MET+LRG group, the relative abundances of Blautia (P = 0.005) and Dialister (P = 0.045) were significantly lower than in the UNT group. The relative abundance of Megasphaera in the MET group was significantly greater than in the MET+LRG group (P = 0.041). Conclusions: Treatment with MET and MET+LRG results in significant alterations in gut microbiota, compared with the profiles of patients at the time of T2DM diagnosis. These alterations differed significantly between the MET and MET+LRG groups, which suggests that LRG exerted an additive effect on the composition of gut microbiota.(AU)


Assuntos
Humanos , Diabetes Mellitus Tipo 2 , Metformina , Microbioma Gastrointestinal , Liraglutida/farmacologia , RNA Ribossômico 16S , Microbiologia , Técnicas Microbiológicas , China , Liraglutida/uso terapêutico
18.
Sci Rep ; 14(1): 5002, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424466

RESUMO

Chronic treatment with GLP-1R agonists may moderately lower blood pressure due to increased natriuresis and RAAS inhibition. Short-term effect of these drugs on blood pressure may be opposite and its mechanism remains unclear. We investigated the effect of a single dose of liraglutide on diurnal blood pressure profile, natriuresis, hydration and serum concentration of renin, aldosterone and atrial natriuretic peptide (ANP) in diabetic kidney disease (DKD). 17 patients with eGFR < 30 ml/min/1.73 m2 and 17 with > 60 ml/min/1.73 m2 received in a random order a single subcutaneous dose 1.2 mg liraglutide and placebo with subsequent 24 h blood pressure and natriuresis monitoring. Before and after each medication thoracic fluid index and plasma renin, aldosterone and ANP were also assessed. The blood pressure load in the daytime and nighttime were significantly increased after liraglutide compared to placebo in patients with eGFR < 30 ml/min/1.73 m2. In patients with eGFR > 60 ml/min/1.73 m2 the changes of arterial pressure were comparable, while the morning surge was significantly reduced after liraglutide compared to placebo. After liraglutide 24 h urine sodium excretion increased in both groups vs. placebo (p < 0.001), the effect was greatest in subjects with eGFR > 60 ml/min/1.73 m2. Plasma ANP increased after liraglutide in both groups, most in patients with eGFR < 30 ml/min/1.73 m2 group. Plasma aldosterone (p = 0.013) and thoracic fluid index (p = 0.01) decreased after liraglutide compared to placebo (p = 0.013 and p + 0.01, respectively. Plasma renin concentration remained unchanged. In severe chronic kidney disease liraglutide induces a transient increase of blood pressure due to reduced natriuresis. The natriuretic effect of liraglutide in DKD may be related to increased ANP and decreased aldosterone secretion.


Assuntos
Diabetes Mellitus , Insuficiência Renal , Humanos , Natriurese/fisiologia , Pressão Sanguínea/fisiologia , Renina , Liraglutida/farmacologia , Liraglutida/uso terapêutico , 60650 , Aldosterona/farmacologia , Rim , Fator Natriurético Atrial
19.
Clin Nutr ESPEN ; 59: 208-213, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38220377

RESUMO

BACKGROUND & AIMS: Ectopic fat deposition is associated with worsening of glycemic control. This study was conducted to determine whether liraglutide reduces ectopic fat deposition, especially in pancreas, in patients with type 2 diabetes (T2D). METHODS: We retrospectively recruited T2D patients who underwent abdominal unenhanced CT scans both before and after administration of liraglutide (N = 13) or glimepiride (N = 29). Using CT values of pancreas (P), liver (L) and spleen (S), we defined the indices of intrapancreatic and liver fat as P-S value and L-S value, respectively. Increase of each value suggests the reduction of each fat deposition. RESULTS: The values of HbA1c (p = 0.0017) and body weight (p = 0.0081) decreased, and L-S (p = 0.0024) increased significantly after administration of liraglutide compared with those at baseline. Similarly, P-S tended to increase in the liraglutide group (p = 0.0547) and increased significantly in the liraglutide subgroup with fatty pancreas (p = 0.0303), defined as having baseline P-S less than -5. In the glimepiride group, P-S did not increase regardless of baseline P-S. Among patients with fatty pancreas, administration of liraglutide tended to be a significant factor for the change in P-S after adjustment for the change in HbA1c (p = 0.1090) and the change in visceral fat area (p = 0.1030). CONCLUSIONS: Intrapancreatic fat deposition was decreased after treatment with liraglutide, but not glimepiride, in T2D patients with fatty pancreas. Liraglutide might reduce intrapancreatic fat deposition independently of decreases in HbA1c and visceral fat volume.


Assuntos
Diabetes Mellitus Tipo 2 , Compostos de Sulfonilureia , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hemoglobinas Glicadas , Estudos Retrospectivos
20.
Neurochem Res ; 49(4): 1061-1075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38267691

RESUMO

Glucagon-like peptide 1 (GLP-1) analogues have been commercialized for the management of type 2 diabetes. Recent studies have underscored GLP-1's role as a modulator of alcohol-related behavior. However, the role of the GLP-1 analogue liraglutide on alcohol-withdrawal responses have not been fully elucidated. Liraglutide binds to the G-protein-coupled receptor and activates an adenylyl cyclase and the associated classic growth factor signaling pathway, which acts growth factor-like and neuroprotective properties. The underlying neurobiological mechanisms of liraglutide on alcohol withdrawal remains unknown. This study endeavored to explore the effects of liraglutide on the emotion and memory ability of alcohol-withdrawal mice, and synaptic morphology in the medial prefrontal cortex (mPFC) and the hippocampus (HP), and thus affects the relapse-like drinking of alcohol-withdrawal mice. The alcohol-withdrawal group was reintroduced to a 20% v/v alcohol and water through the two-bottle choice for four consecutive days, a period referred to as alcohol re-drinking. Male C57BL/6J mice were exposed to a regimen of 20% alcohol and water for a duration of 6 weeks. This regimen established the two-bottle choice model of alcohol exposure. Learning capabilities, memory proficiency, and anxiety-like behavior were evaluated using the Morris water maze, open field, and elevated plus maze paradigms. Furthermore, synaptic morphology and the levels of synaptic transport-related proteins were assessed via Golgi staining and Western Blot analysis after a two-week alcohol deprivation period. Alcohol re-drinking of alcohol-withdrawal mice was also evaluated using a two-bottle choice paradigm. Our findings indicate that liraglutide can substantially decrease alcohol consumption and preference (p < 0.05) in the alcohol group and enhance learning and memory performance (p < 0.01), as well as alleviate anxiety-like behavior (p < 0.01) of alcohol-withdrawal mice. Alcohol consumption led to a reduction in dendritic spine density in the mPFC and HP, which was restored to normal levels by liraglutide (p < 0.001). Furthermore, liraglutide was found to augment the levels of synaptic transport-related proteins in mice subjected to alcohol withdrawal (p < 0.01). The study findings corroborate that liraglutide has the potential to mitigate alcohol consumption and ameliorate the memory impairments and anxiety induced by alcohol withdrawal. The therapeutic efficacy of liraglutide might be attributed to its role in counteracting synapse loss in the mPFC and HP regions and thus prevented relapse-like drinking in alcohol-withdrawal mice.


Assuntos
Alcoolismo , Diabetes Mellitus Tipo 2 , Síndrome de Abstinência a Substâncias , Camundongos , Masculino , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Alcoolismo/tratamento farmacológico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Camundongos Endogâmicos C57BL , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Ansiedade/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Etanol/farmacologia , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Sinapses , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...